Química en casa.com

La espectroscopía de absorción y emisión atómica: cómo los átomos revelan su identidad

Cada elemento químico tiene una “firma luminosa” única. Cuando un átomo absorbe o emite luz, lo hace en longitudes de onda específicas que funcionan como un código de barras. La espectroscopía de absorción y emisión atómica aprovecha este fenómeno para identificar elementos y medir sus concentraciones con una precisión extraordinaria. Es una técnica fundamental en química analítica, astronomía, medicina y control de calidad industrial.

¿Qué es la espectroscopía atómica?

Es el estudio de cómo los átomos interactúan con la luz.
Dependiendo del proceso, puede ser:

  • Absorción atómica: el átomo absorbe energía (luz) y sus electrones saltan a niveles superiores.
  • Emisión atómica: el átomo libera energía en forma de luz cuando los electrones regresan a niveles inferiores.

Cada transición electrónica produce o absorbe longitudes de onda específicas, creando un espectro característico.

Leer más…«La espectroscopía de absorción y emisión atómica: cómo los átomos revelan su identidad»

La química del spray evanescente: la ciencia detrás de las faltas en el fútbol

Si has visto un partido de fútbol en los últimos años, seguro has notado que el árbitro usa un spray blanco para marcar la distancia de la barrera en los tiros libres. Esa línea aparece… y luego desaparece como por arte de magia. Pero no es magia: es química aplicada al deporte. En este artículo exploramos cómo funciona el spray evanescente, su historia y las moléculas que lo hacen posible.

¿Qué es el spray evanescente?

Es un aerosol temporal que forma una espuma blanca visible sobre el césped durante unos segundos. Sirve para marcar:

  • La distancia reglamentaria de la barrera (9,15 m)
  • El punto exacto donde debe colocarse el balón
  • Límites visuales para evitar trampas
Historia del spray evanescente

Aunque se popularizó en el Mundial Brasil 2014, su origen es anterior.

  • Fue inventado por el brasileño Heine Allemagne en 2000.
  • Su objetivo era resolver un problema clásico: jugadores adelantándose en la barrera.
  • Tras pruebas en ligas sudamericanas, la FIFA lo aprobó oficialmente.

El invento revolucionó el arbitraje porque permitió aplicar la regla de forma visual, rápida y sin interrupciones.

Leer más…«La química del spray evanescente: la ciencia detrás de las faltas en el fútbol»

Conociendo los aparatos de laboratorio: El mechero Bunsen

El mechero Bunsen es uno de los instrumentos más emblemáticos del laboratorio químico. Su llama azul, estable y regulable lo convierte en una herramienta esencial para calentar sustancias, esterilizar materiales y realizar experimentos clásicos. En esta guía conocerás su historia, funcionamiento, partes y usos principales.

¿Qué es el mechero Bunsen?

El mechero Bunsen es un dispositivo que produce una llama controlada mediante la combustión de un gas (generalmente metano o gas natural). Su diseño permite mezclar aire y combustible antes de la ignición, generando una llama limpia, caliente y ajustable.

Breve historia del mechero Bunsen

El mechero Bunsen fue ideado por el químico alemán Robert Wilhelm Bunsen en 1857, aunque basándose en diseños previos, notablemente uno de Peter Desaga, quien modificó un diseño original de Michael Faraday, para crear un quemador de gas que producía una llama limpia y regulable, esencial para el desarrollo de la espectroscopia y la química de laboratorio.Leer más…«Conociendo los aparatos de laboratorio: El mechero Bunsen»

Ejercicio de molaridad: cómo calcular la concentración de una solución

La molaridad es una de las formas más usadas para expresar concentración en química. Se define como la cantidad de mol de soluto disueltos en un litro de solución. En este ejercicio aprenderás a calcular la molaridad de una solución de hidróxido de sodio (NaOH) preparada en el laboratorio, siguiendo un método claro y sencillo.

 

Enunciado del ejercicio

¿Cuál es la molaridad de una solución preparada con 10 g de NaOH disueltos en 250 mL de agua?

Paso a paso para resolver
  1. Identificar los datos del problema
  • Masa de NaOH: 10 g
  • Volumen de solución: 250 mL = 0,250 L
  • Masa molar del NaOH: 40 g/mol

Leer más…«Ejercicio de molaridad: cómo calcular la concentración de una solución»

Más allá del sólido, líquido y gas: los estados de la materia que no conocías

Cuando pensamos en materia, solemos imaginar sólidos, líquidos y gases. Pero la química y la física moderna han descubierto estados mucho más exóticos que solo aparecen en condiciones extremas. Este artículo te lleva desde lo cotidiano hasta lo cuántico, explorando los estados clásicos y los más misteriosos de la materia.

 

Los estados clásicos de la materia
Estado Características Ejemplo cotidiano
Sólido Forma y volumen definidos, partículas ordenadas Hielo, madera, metal
Líquido Volumen definido, forma variable, partículas móviles Agua, aceite, alcohol
Gas Sin forma ni volumen definidos, partículas dispersas Aire, vapor, dióxido de carbono
Plasma Gas ionizado, partículas cargadas, alta energía Relámpagos, interior del Sol

Leer más…«Más allá del sólido, líquido y gas: los estados de la materia que no conocías»

La química del chocolate caliente: dulzura y ciencia en Navidad

El chocolate caliente es más que una bebida reconfortante: es un laboratorio químico en tu taza. Su textura cremosa, su aroma envolvente y su sabor dulce provienen de moléculas que interactúan de manera única con nuestros sentidos.

Moléculas protagonistas
  • Teobromina: alcaloide presente en el cacao, similar a la cafeína, que estimula y da energía.
  • Feniletilamina: molécula asociada con la sensación de bienestar y placer.
  • Grasas del cacao (manteca de cacao): responsables de la textura cremosa.
  • Azúcares: aportan dulzura y potencian la liberación de aromas.
  • Proteínas de la leche: interactúan con las grasas y azúcares para dar cuerpo y suavidad.

Leer más…«La química del chocolate caliente: dulzura y ciencia en Navidad»

La química del estrés navideño: hormonas, neurotransmisores y cómo equilibrarlos

Diciembre es mágico… pero también puede ser abrumador. Entre compras, compromisos, trabajo acumulado y expectativas familiares, muchas personas sienten más estrés de lo habitual. La química del cuerpo explica por qué ocurre y cómo podemos equilibrarlo de forma natural.

La química detrás del estrés navideño

El estrés no es solo una emoción: es una reacción química donde participan hormonas y neurotransmisores que regulan nuestro estado de ánimo, energía y respuesta al entorno.

Moléculas clave
  • Cortisol: hormona del estrés; aumenta cuando hay presión, ruido, multitarea o falta de descanso.
  • Adrenalina: activa el modo “alerta”; acelera el corazón y la respiración.
  • Serotonina: regula el bienestar, el sueño y la calma.
  • Dopamina: asociada al placer, la motivación y las recompensas (como abrir regalos o comer algo rico).
  • Oxitocina: hormona del vínculo social; aumenta con abrazos, risas y conexión emocional.

Leer más…«La química del estrés navideño: hormonas, neurotransmisores y cómo equilibrarlos»

Cálculo de pH: ácido fuerte y base fuerte

El pH mide la acidez o basicidad de una solución, y dominar su cálculo es clave en química. Aquí resolveremos ejemplos sencillos con ácido clorhídrico y hidróxido de sodio, explicando cómo obtener el pH y el pOH de manera directa.

Problema A: pH de HCl 0,01 M
  • Modelo químico: ácido fuerte → disociación completa, [H+] ≈C .
  • Cálculo:

pH = -log (0,01) = 2

Problema B: pH de NaOH 2,0 x 10-3 M
  • Modelo químico: base fuerte → [OH] ≈ C
  • Cálculos:

pOH = -log ( 2,0 x 10-3 ) ≈ 2,70

pH = 14 – pOH ≈ 14 – 2,70 = 11,30Leer más…«Cálculo de pH: ácido fuerte y base fuerte»

Ejercicio de entalpía: la combustión del metano

Las reacciones químicas no solo transforman la materia, también liberan o absorben energía. En este ejercicio calcularemos el cambio de entalpía (ΔH) en la combustión del metano, un ejemplo clásico de reacción exotérmica.

Enunciado
  • Calcular ΔH de la combustión del metano:

CH4 + 2O2 →CO2 + 2H2O(l)

Datos típicos de entalpías de formación

  • CH₄(g): ΔHºf ≈ -74,8 kJ/mol
  • O₂(g): ΔHºf ≈ 0 kJ/mol
  • CO₂(g): ΔHºf ≈ -393,5 kJ/mol
  • H₂O(l): ΔHºf ≈ -285,8 kJ/mol
CálculoLeer más…«Ejercicio de entalpía: la combustión del metano»

La química de los perfumes navideños: canela, clavo y vainilla

Los aromas navideños despiertan recuerdos y emociones. La canela, el clavo y la vainilla son protagonistas de la temporada, y su magia proviene de moléculas aromáticas que interactúan con nuestros sentidos.

 

Moléculas responsables del aroma
Ingrediente Molécula principal Aroma característico Nota química
Canela Cinamaldehído Dulce, cálido, especiado Aldehído aromático
Clavo Eugenol Picante, intenso, medicinal Fenol aromático
Vainilla Vainillina Dulce, suave, reconfortante Aldehído fenólico

Leer más…«La química de los perfumes navideños: canela, clavo y vainilla»

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies