Etiqueta: <span>electrones</span>

Modelos Atómicos: Teoría Atómica de Schrödinger y Heisenberg

Este modelo está basado en el principio de dualidad onda – partícula y en el principio de incertidumbre de Heisenberg. Según el principio de incertidumbre, el electrón se comporta como una onda y como una partícula y no es posible conocer o pronosticar su trayectoria.

Representación del modelo atómico de Schrödinger
Representación del modelo atómico de Schrödinger. Imagen extraída de: issuu.com

En esta teoría no se toma en cuenta la órbita, el cual es el lugar donde existe mayor probabilidad  de encontrar al electrón. Pero pronostica apropiadamente las líneas de emisión espectrales, en átomos neutros como en átomos ionizados.

De igual manera, esta teoría aportó la creación de la configuración electrónica de donde se obtiene los número cuánticos de los electrones de un átomo. Dicha distribución electrónica señala el nivel de energía del electrón, es decir, a qué distancia se encuentra del núcleo, el orbital y el giro que posee sobre su mismo eje.

Leer más…«Modelos Atómicos: Teoría Atómica de Schrödinger y Heisenberg»

Modelos Atómicos: Teoría atómica de Niels Bohr

El físico danés Niels Bohr propuso en el año 1913 un nuevo modelo atómico donde pretendía corregir las limitaciones y errores que presentaba el modelo planetario de Rutherford.

Para Bohr el átomo está constituido por una parte central llamada núcleo en la que se localiza la carga positiva y una porción de su masa. Los electrones se encuentran dispuestos en órbitas circulares a través de diferentes niveles alrededor del núcleo. A cada nivel le corresponde una energía que será mayor cuanto más alejada del núcleo se encuentre. La distancia de las órbitas al núcleo, así como su energía, toma valores definidos. Cada nivel admite un número máximo de electrones que es igual a  2n2  donde n designa el nivel de energía (1, 2, 3,…)Leer más…«Modelos Atómicos: Teoría atómica de Niels Bohr»

Modelos Atómicos: Teoría atómica de Rutherford

El científico Rutherford fue el primero en considerar que el átomo está divido en dos áreas. Rutherford realizó en el año 1911 el «experimento de la lámina de oro», que da explicación a esta teoría.

En su teoría, Rutherford señala que la mayor parte de la masa del átomo y toda su carga positiva están en una pequeña zona central que luego se llamó núcleo. Alrededor del núcleo y a grandes distancias del mismo, se encuentran los electrones girando. Rutherford hizo referencia al número de cargas. Para él, el átomo es neutro ya que posee la misma cantidad de cargas positivas y negativas.

Leer más…«Modelos Atómicos: Teoría atómica de Rutherford»

¿QUÉ SON LOS FERMIONES?

Los fermiones son una especie de partículas subatómicas que forman parte esencial de la estructura de la materia, gracias a sus especiales propiedades cuánticas que favorecen a la distribución de los átomos y las moléculas.

Entonces, ¿cuáles son los fermiones? Son los componentes básicos de los átomos como los electrones, neutrones, protones, quarks y neutrinos.

Estas partículas se someten bajo el Principio de Exclusión de Pauli. Este principio fue ideado por Wolfgang Ernst Pauli en el año 1925 y en él se indica que no puede existir simultáneamente dos fermiones con todos sus números cuánticos iguales. No pueden girar en la misma dirección, pero pueden hacerlo en direcciones opuestas

Pero, ¿qué significa esto? Esto quiere decir que un par de electrones en un átomo no pueden tener los cuatro números cuánticos completamente iguales. Estos números cuánticos son:Leer más…«¿QUÉ SON LOS FERMIONES?»

El Protón: descubrimiento y características

Los protones son aquellas partículas subatómicas de carga positiva, perteneciente a la familia de los fermiones, y se hallan en la parte interna del núcleo atómico. El protón tiene una carga igual y opuesta a la carga de un electrón. En consecuencia, en un átomo neutro, la cantidad de electrones es igual al número de protones.

Los protones son bastante pequeños, aproximadamente de 0,0001 Angstroms (Å). Para que tengan una idea, un átomo mide 1 angstrom (Å), entonces los protones son increíblemente más pequeños que los átomos. No obstante, estos presentan una fuerza impresionante ya que se empujan entre sí ejerciendo una fuerza de 100 Newtons.

 

¿Quién descubrió el protón?

El descubrimiento del protón se le atribuye al científico británico Ernest Rutherford. Dicho hallazgo se llevó a cabo en el año 1918, cuando Rutherford, durante la realización de experimentos con gas nitrógeno, observó que al proyectar partículas alfa contra el gas, sus instrumentos revelaban la existencia de núcleos de hidrógeno.Leer más…«El Protón: descubrimiento y características»

Enlace Metálico

Enlace Metálico
Imagen by: wirdou.com

Este tipo de enlace se caracteriza por la unión de metales, mediante la pérdida de electrones de sus capas más externas, que se reubican más o menos libremente entre ellos, creando una nube electrónica.

Estos átomos se concentran de manera muy cercana unos a otros, lo que ocasiona estructuras muy compactas. Un ejemplo, son los característicos empaquetamiento compacto de esferas (hexagonal compacta), cúbica centrada en las caras o la cúbica centrada en el cuerpo.Leer más…«Enlace Metálico»

Enlace Dativo

Este enlace se caracteriza por presentar un par electrónico que es cedido por un sólo átomo, el cual debe tener al menos un par de electrones libres sin enlazar. Por ejemplo como el nitrógeno, oxígeno y cloro.

Igualmente, el átomo que acepta el par electrónico debe estar carente de electrones, como el ión hidrógeno y el aluminio, por ejemplo.

Leer más…«Enlace Dativo»

Enlace Covalente

Enlace covalente
Imagen by: wirdou.com

Es la fuerza que permite la unión entre dos átomos mediante la compartición de un electrón por átomo. A su vez los enlaces covalentes se dividen en enlace covalente polar y apolar.

Los enlaces covalentes polares son aquellos en donde la diferencia de electronegatividad de los átomos que lo forman va desde 0 hasta 1.7 (sin considerar el 0). Presentan un momento dipolar distinto a cero, además de ser solubles en agua y otros solventes polares.

Por su parte, los compuestos que se originan por medio de enlaces covalentes apolares, no exhiben momento dipolar y la diferencia de electronegatividad es igual a cero. Este tipo de compuesto presenta simetría y son solubles en solventes apolares, como por ejemplo el hexano.Leer más…«Enlace Covalente»

Enlace Químico

Cuando hablamos de enlace lo asociamos rápidamente con la unión, combinación, acoplamiento en este caso de átomos para formar moléculas y macromoléculas. Pero, ¿por qué se enlazan los átomos?

Lo que sucede es que cuando un átomo se halla solo, cada electrón que lo conforma, experimenta la influencia de su núcleo y de los restantes electrones, sin embargo cuando dos átomos se aproximan y se enlazan, los electrones correspondientes a cada átomo (no cualquier electrón, puede formar un enlace, sino solamente los electrones del último nivel energético, es decir, el más externo) están sometidos a la influencia del núcleo y de los electrones del otro átomo. Por lo tanto la fuerza de atracción que existe entre esos átomos se denomina enlace químico.Leer más…«Enlace Químico»

Distribución electrónica en la tabla periódica

           La representación de la tabla periódica está profundamente relacionada con la configuración electrónica de los átomos de los elementos químicos. Por ejemplo, todos los elementos del grupo 1 tienen una configuración electrónica [E] ns1 (donde [E] es la configuración del gas inerte correspondiente), y tienen una gran similitud en sus propiedades químicas.

          La capa electrónica más externa se llama «capa de valencia» y establece las propiedades químicas. Es importante recordar que el hecho de que las propiedades químicas sean parecidas para los elementos de un grupo fue descubierto hace más de un siglo, mucho antes inclusive de surgir la idea de configuración electrónica. La regla de Madelung, no está muy clara de cómo se muestra en la tabla periódica, ya que algunas propiedades (tales como el estado de oxidación +2 en la primera fila de los metales de transición) serían diferentes con un orden de llenado de orbitales distinto.Leer más…«Distribución electrónica en la tabla periódica»

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies